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Gas oscillations occurring in a plane channel in excitation of elastic walls which is symmetric relative to the
longitudinal axis are investigated by the methods of numerical modeling. The spatial localization of transverse
and longitudinal waves has been revealed and the character of resonance oscillations of the gas in the vicin-
ity of the excitation region for different velocities of the flow has been established.

Investigation of resonance oscillations of a gas in tubes and channels is associated with various technical ap-
plications [1]. For longitudinal oscillations of a gas resonant frequencies are determined by the formula ωmn =
nπc/(mL); prominence is given to the oscillations with frequencies of linear resonances at m = 1 and n = 1, 2, 3, ...,
which is due to the occurrence of the highest-intensity discontinuous waves in their vicinity [1–3]. Nonlinear or sub-
harmonic resonances occurring in excitation with frequencies ωmn, m > 1, are considered along with linear resonances.
The longitudinal oscillations of a gas that are excited in a closed tube by a piston oscillating with frequencies of the
first and second nonlinear resonances (ω21 and ω31) are investigated experimentally in [2], and the physical experiment
of [2] is compared to a numerical one in [3].

In the present work, we investigate the motion of a gas in a plane channel. We consider the localization of
transverse and longitudinal waves, assess the influence of the average velocity of the flow on the character of propa-
gation of the waves in the gas, and reveal the features of oscillations related to the resonance properties of the channel
in the transverse direction. We assume that the upper and lower channel walls are elastic for −l ≤ x ≤ l and rigid be-
yond this interval and the channel cross section possesses a longitudinal axis of symmetry (Fig. 1a). The problem will
be solved in a symmetric formulation: the calculation region will be bounded in the transverse direction by the longi-
tudinal axis of symmetry and by the longitudinal channel wall (Fig. 1b).

To describe the gas motion in the channel we employ the system of Navier–Stokes equations for a compress-
ible heat-conducting gas [4] written in a Cartesian coordinate system:
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System (1) in the region with variable boundaries is solved by introduction of the time-dependent generalized coordi-
nates [4–6] ξ = ξ(x, y, t), η = η(x, y, t), τ = t. In new variables, system (1) has the form

qt
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 + Gη

∗
 = 0 , (2)
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To solve it we used the McCormack explicit method of second order of accuracy with time splitting and a scheme of
correction of fluxes [4, 6]. On a uniform grid, the McCormack scheme contains two steps implementing the transition
to the next layer: the predictor step and the corrector step

qj,k
°

 = qj,k
n

 − 
∆t

∆ξ
 [Fj+1,k

n
 − Fj,k

n
] − 

∆t
∆η

 [Gj,k+1
n

 − Gj,k
n

] ;

qj,k
n+1

 = 0.5 (qj,k
n

 + qj,k
° ) − 0.5 

∆t

∆ξ
 [Fj,k
°

 − Fj−1,k
°

] − 0.5 
∆t
∆η

 [Gj,k
°

 − Gj,k−1
°

] .

Fig. 1. Scheme of the channel (a) and fragment of the finite-difference grid
(b).
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Each spatial group F and G at the predictor and corrector steps is approximated by one-sided finite-difference opera-
tors. Thus, for example, the derivatives with respect to ξ which enter into Fj+1,k

n  and Fj,k
n  are approximated by the left-

hand difference schemes of first order of accuracy at the predictor step and by the right-hand ones at the corrector step
while the derivatives with respect to η are approximated by the central difference schemes of second order of accu-
racy. The derivatives with respect to η which enter into Gj,k+1

n  and Gj,k
n  are approximated by the left-hand difference

schemes of first order of accuracy while the derivatives with respect to ξ are approximated by the central schemes. In
calculations on a nonuniform grid with bunching near the lateral surface, we introduced the scheme of time splitting
[4, 6]. On the finite-difference grid in the physical region (x, y) whose fragment is shown in Fig. 1b the step used for
the x axis is uniform. We prescribed Nk nodes along the y axis. The first N1 nodes formed cells with a fixed step
∆y (0 ≤ y ≤ rd ⁄ 2). Nodes with N1 to Nk (rd ⁄ 2 < y ≤ d ⁄ 2) formed cells with a finer step ∆y1. The parameter r pre-
scribed the boundary of the region with a small step. The region (ξ, η) was a unit square with uniform splitting along
the axes.

The scheme of splitting for the region in question was prescribed by a symmetric sequence of one-dimen-
sional operators. In the region bounded by the nodes with the subscripts 1 ≤ j ≤ Nj − 1 and 2 ≤ k ≤ N1, the scheme had
the form
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Each one-dimensional operator included the predictor and corrector steps. Thus, for example, the action of the
operator Pξ(∆t ⁄ 2) on the column vector qj,k

n  which resulted in the transition to the intermediate value q
_
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qj,k
°

 = qj,k
n

 − 
∆t

∆ξ
 [Fj+1,k

n
 − Fj,k

n
],   qj,k

___
 = 0.5 (qj,k

n
 + qj,k

° ) − 0.5 
∆t

2∆ξ
 [Fj,k
°

 − Fj−1,k
°

] .

In the region of bunching of the grid nodes 2 ≤ j ≤ Nj − 1 and N1 ≤ k ≤ Nk − 1, the splitting scheme involved
2n one-dimensional operators Pη:
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where n = ∆y ⁄ ∆y1. The symmetric sequence of one-dimensional operators is required to preserve the second order of
accuracy of the numerical method [4]. To suppress oscillations on shock waves we used the well-known Lax–Wen-
droff sound scheme of correction of fluxes described in [4] in detail.

The change in the shape of the elastic element caused the geometry of the calculation region to change. Re-
arrangement of the finite-difference grid in "physical" variables (x, y) and its mapping on a fixed finite-difference grid
in "calculation" variables (ξ, η) were realized at each time step. The rearrangement parameters ξx, ξy, ηx, ηy, xt, yt,
ξt, and ηt involved in representation of the system of the equations of motion of the gas in generalized moving coor-
dinates [4, 5] were determined and transition to the next time layer was implemented according to the McCormack
scheme.

On solid surfaces, we set the adhesion conditions for the components of the gas velocity — on the plate sur-
face, they were set equal to the corresponding components of the plate velocity. We set homogeneous boundary con-
ditions of the second kind for the density, energy, and temperature at all the boundaries of the calculation region,
including the plate surface. We determined the temperature, density, and velocity of the gas at the internal nodes of
the calculation region at the initial instant of time. On the axis of symmetry, we set u(j, 1) = u(j, 2) and v(j, 1) = −v(j,
2) for the velocity components at the nodes of the finite-difference grid (Fig. 1b).

To describe the motion of elastic wall portions we used the system of dynamic geometrically nonlinear equa-
tions of the theory of thin plates that obey the Kirchhoff–Love hypothesis [7]:
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(3)

For the longitudinal edges of the plate (Fig. 1a) we specified the conditions of rigid sealing:

W = 0 ,   V = 0 ,   ∂W ⁄ ∂x = 0   for   x = % l . (4)

It was assumed that the plate is fixed at the initial instant of time:

W = 0 ,   V = 0 ,   ∂W ⁄ ∂t = 0 ,   ∂V ⁄ ∂t = 0   for   t = 0 ,   − l ≤ x ≤ l . (5)

The tangential component of the load is equal to zero while the normal component contains the rigid and
slave parts. The slave character of the load is determined by the excess pressure on the surface of the elastic plate.
The external pulse excitation F(t) is a rigid component independent of the shape of the oscillating surface:

Zn = F (t) + p0 − p ,   Zτ = 0 ,   F (t) = F0t   for   t < Tr ,   F (t) = 0   for   t ≥ Tr . (6)

System (3) with conditions (4)–(6) was solved by the finite-difference method with the use of implicit difference
schemes of second order of accuracy [8]. In analyzing the solution of the system, we constructed the power spectra of
the oscillations of the gas pressure at different points of the channel and the power spectra of deflection oscillations at
different points of the plate:
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where Xj is the value of the signal at the instant of time tj = j∆t, Sk is the frequency-dependent discrete component of
the power spectrum, ∆t is the time step, and i is the imaginary unit. The gasdynamic part of the software system was
tested by comparing the results of numerical modeling and the existing experimental data [3]. The method used to
model the dynamics of the elastic element has been investigated in [9].

The numerical experiment lay in loading elastic channel walls by a single triangular pressure pulse, which re-
sulted in the oscillations of the plates constituting portions of the upper and lower walls for −l ≤ x ≤ l. The pulse du-
ration was equal to half the period of natural oscillations of the plates at the lower resonant frequency. We considered
gas flows caused by the oscillations of the elastic channel walls for different velocities of the middle flow.

Fig. 2. Oscillations of the midpoint of the plate. W, m; t, sec.
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The channel length was selected in such a manner that the disturbances on the time interval under study
failed to reach the inlet and outlet boundaries. The calculations for the channel of height d = 0.03 m were carried out
for the following parameters of the plate: h = 0.002 m, 2l = 0.2 m, E = 1011 N/m2, ν = 0.3, and density ρpan = 4500
kg/m3. In solving the elastic problem, the number of nodes of the finite-difference grid was N = 60. We took air with
γ = 1.4, R = 278 J/(kg⋅K), T0 = 290 K, and ρ0 = 1.2 kg/m3 as the gas filling the channel. The results were obtained
on the computational grid with parameters Nj = 297, Nk = 25, N1 = 9, and r = 0.8, where N1 is the number of the
nodes for y ≤ rd. In calculating, the time step was ∆t = 3⋅10−8 sec. In the figures presented below, the pressure and
the velocity components are assigned to the pressure and the velocity of sound of an undisturbed gas.

Fig. 3. Time dependences of the pressure and their power spectra: 1) on the
channel axis at the point (x = 0.06, y = 0); b) on the surface of the oscillating
wall (x = 0.06 m); c) on the channel axis at the point (x = 0.2 m, y = 0). The
pressure is assigned to the pressure of an undisturbed gas at t = 0. f, Hz.
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1. Oscillations of the Gas in the Channel in the Absence of Middle Flow. The deflection of the midpoint of
the plate as a function of time is given in Fig. 2. The frequency of oscillations occurring upon external unloading is
f C 1000 Hz; the oscillation mode is symmetric. The oscillations of the plates cause the oscillations of the gas column
concentrated between the channel walls. The portion of the channel adjacent to the plates (−l ≤ x ≤ l, −d ⁄ 2 ≤ y ≤ d ⁄ 2)
(Fig. 1a) can be considered as an acoustic resonator whose eigenfrequencies are determined by the channel height. The
Q factor of such a resonator depends on the dissipative loss and loss by the formation of shock waves and by radia-
tion along the channel. Because of the symmetric character of excitation, the peak values of the pressure are observed
both near the oscillating wall and on the longitudinal axis of symmetry. For a channel height of d = 0.03 m and a
velocity of sound of c (T = 290 K) = (γRT)1

 ⁄ 2 = 336 m/sec the frequency of the first linear acoustic resonance of the
gas column in the transverse direction is f1,1 = c ⁄ 2d = 5600 Hz [1–3, 10, 11] and it will be observed near the walls
at one fixed plate and one oscillating plate. Since the peak values of the pressure on the axis of symmetry are pro-
duced by converging waves that traversed half the channel height, this frequency is doubled and is f1,1 = 11,200 Hz.
The ratio of frequencies f1,1

 ⁄ f ≈ 11, which leads to the generation of the subharmonic acoustic resonance f1,11 mani-
festing itself in the frequency modulation of the carrier acoustic signal of frequency f by oscillations with a frequency
f1,1 [2, 3]. Figure 3a gives the pressure as a function of time and the corresponding power spectrum of oscillations on
the channel axis (x = 0.06 m, y = 0), and Fig. 3b gives the same characteristics on the surface of the oscillating wall
for x = 0.6 m. The power spectra of pressure oscillations contain frequencies which are multiples of the frequency of
oscillations of the elastic walls. The resonance f1,11 is pronounced both on the axis of symmetry and at the surface of
the oscillating plate (Fig. 3a and b). Transverse-type oscillations (along the y axis) occurring with a frequency f1,1 are
discontinuous in character and are presented by waves with a steep leading front and a mildly sloping trailing front.
With distance from the resonator boundaries (x = %l), we observe a decrease in the power of the oscillations occurring
with a frequency f1,1 along the longitudinal axis (Fig. 3c).

The distribution of the pressure and of the transverse velocity component v possess symmetry relative to the
axis x = 0 (Fig. 4a and b). The longitudinal component of the velocity u on the channel axis is a function of odd
symmetry relative to the point x = 0 (Fig. 4b). It should be noted that whereas the waves of pressure and longitudinal

Fig. 4. Distributions of the pressure and of the longitudinal and transverse
components of the velocity of the gas at the instant of time t = 0.0025 sec in
the absence of middle flow. The pressure and the velocity are assigned to the
pressure and the velocity of sound in an undisturbed gas at t  = 0.

Fig. 5. Distributions of the pressure and of the longitudinal and transverse ve-
locity components at the instant of time t = 0.0025 sec for different velocities
of the middle flow: 1) velocity of the flow is 0.1c0; 2) velocity of the flow is
0.3c0. The pressure and the velocity in the figures are assigned to the pressure
and the velocity of sound in an undisturbed gas at t = 0.

1384



velocity are propagating along the channel, the transverse oscillations remain localized near the plate. The amplitudes
of oscillations of the transverse velocity are substantially smaller outside this region than inside it (Fig. 4c). The dis-
tribution of the transverse component along the longitudinal axis is alternating in character, which indicates the vor-
tices propagating along the channel axis. Vortices with the highest rotational velocity are adjacent to the plate on the
left and on the right and have opposing directions of rotation, which is demonstrated by the identical direction of the
transverse velocity components (Fig. 4c).

With distance from the region (−l ≤ x ≤ l, −d ⁄ 2 ≤ y ≤ d ⁄ 2) the transverse oscillations are transformed to longi-
tudinal ones: the amplitude of the transverse oscillations decreases more rapidly than the amplitude of the longitudinal
ones. In the case of the transverse oscillations of the gas, subharmonic resonances spatially localized in the vicinity of
the oscillating plate are generated, whereas the longitudinal oscillations are observed throughout the channel.

2. Influence of Middle Flow on Gas Oscillations in the Channel. If oscillations of the gas in the channel
occur for a nonzero middle flow, the distribution of the pressure and velocity fields loses its symmetry. The difference
of the velocities of downstream and upstream propagation of a disturbance wave leads to the fact that the lengths of
the waves running streamwise and against the stream become dissimilar (Fig. 5a and b). The difference in the wave-
lengths on both sides of the oscillation resource increases with the velocity of the flow. At the same time, the distri-
bution of the transverse-velocity field remains concentrated near the oscillating plate (Fig. 5c). Unlike the oscillation
mode for a zero middle flow, the vortices adjacent to the plate acquire the identical direction of rotation: the trans-
verse velocity component has different signs on both sides of the midpoint of the plate (x = 0). The time interval be-
tween pressure pulses at points which are symmetric relative to x = 0 makes it possible to determine the flow velocity.
A comparison of the power spectra of pressure oscillations at the points on the axis of symmetry of the channel shows
that high-frequency oscillations of the gas that manifest themselves in subharmonic resonance remain localized in the
vicinity of the oscillating plate. Figure 6 gives the power spectra of pressure oscillations at the points x = %0.2 m on
the channel axis for a flow velocity of 0.1c0. The character of the power spectra enables us to state that with distance
upstream from the disturbance source the high-frequency components of the spectra decay more rapidly than in the di-
rection of middle flow.

Thus, the results of the calculation of the gas dynamics in the channel carried out in the case of local exci-
tation of the walls demonstrate that the region adjacent to the oscillating plates possesses resonance properties for
transverse oscillations. When the frequency of oscillations of the plates coincides with the frequency of subharmonic
resonance of the gas column in the transverse direction, we observe modulation of the carrier acoustic signal by the
oscillations with a frequency of the first linear resonance for the cross section of the channel. With distance from the
region adjacent to the oscillating plates, transformation of the transverse oscillations to longitudinal oscillations occurs:
the amplitude of the transverse oscillations decreases more rapidly than the amplitude of the longitudinal ones. A com-
parison of the power spectra of pressure oscillations enables us to state that with distance upstream from the distur-
bance source the high-frequency spectrum components decay more rapidly than in the direction of middle flow.

This work was carried out with support from the "Integration" Federal Targeted Program, the Foundation for
Research and Development of the Republic of Tatarstan, and the Russian Foundation for Basic Research.

Fig. 6. Power spectra of pressure oscillations on the channel axis for a velocity
of the gas flow of 0.1c0 at the points which are located upstream and down-
stream relative to the oscillating plate: a) x = −0.2 m; b) x = 0.2 m.
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NOTATION

x and y, longitudinal and transverse coordinates in the physical region; ξ, η, generalized coordinates corre-
sponding to them; u and v, longitudinal and transverse components of the gas velocity; t, time; ρ, p, T, and e, density,
pressure, temperature, and total energy of the gas; µ, molecular viscosity; γ, adiabatic exponent; k, thermal conductiv-
ity; Qx and Qy, heat fluxes; τxx, τxy, and τyy, shear stresses in the gas; c, velocity of sound in the gas; qj,k

° , Fj,h
° , and

Gj,k
° , values of the components of the vectors q, F, and G upon realization of the predictor step; fn,m = nc/(m⋅2d) (m,

n = 1, 2, 3, ...), resonant frequencies of the gas column in the transverse direction; f, oscillation frequency of the elas-
tic plate; 2L, channel length; d, channel height; Zτ and Zn, tangential and normal components of the dynamic load; W
and V, deflection and tangential movement of fixed (Lagrangian) points of the middle surface; h and ρpan, thickness
and density of the panel material; E, elastic modulus; ν, Poisson coefficient; R, universal gas constant; S, oscillation-
power spectrum; 2l, length of the elastic plate; α, coefficient of structural damping; Tr and F0, rise time and intensity
of the external-load pulse; j and k, indices (subscripts) of the nodes of the finite-difference grid in the gas in the di-
rection of the x and y axes; Nj and Nk, corresponding numbers of nodes of the finite-difference grid; r and N, numeri-
cal coefficient and number of nodes in the transverse direction that prescribe the boundaries of the wall region with a
fine grid. Subscripts: n, normal; pan, panel; 0, value of the parameters at the initial instant of time; r, rise.
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